A framework for interaction and cognitive engagement in connectivist learning contexts
DOI:
https://doi.org/10.19173/irrodl.v15i2.1709Keywords:
connectivist learning, interaction, connectivism, cognitive engagement, theory building, cMOOCs,Abstract
Interaction has always been highly valued in education, especially in distance education (Moore, 1989; Anderson, 2003; Chen, 2004a; Woo & Reeves, 2007; Wang, 2013; Conrad, in press). It has been associated with motivation (Mahle, 2011; Wen-chi, et al., 2011), persistence (Tello, 2007; Joo, Lim, & Kim, 2011), deep learning (Offir, et al., 2008) and other components of effective learning. With the development of interactive technologies, and related connectivism learning theories (Siemens, 2005a; Downes, 2005), interaction theory has expanded to include interactions not only with human actors, but also with machines and digital artifacts. This paper explores the characteristics and principles of connectivist learning in an increasingly open and connected age. A theory building methodology is used to create a new theoretical model which we hope can be used by researchers and practitioners to examine and support multiple types of effective educational interactions. Inspired by the hierarchical model for instructional interaction (HMII) (Chen, 2004b) in distance learning, a framework for interaction and cognitive engagement in connectivist learning contexts has been constructed. Based on cognitive engagement theories, the interaction of connectivist learning is divided into four levels: operation interaction, wayfinding interaction, sensemaking interaction, and innovation interaction. Connectivist learning is thus a networking and recursive process of these four levels of interaction.
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International Licence. The copyright of all content published in IRRODL is retained by the authors.
This copyright agreement and use license ensures, among other things, that an article will be as widely distributed as possible and that the article can be included in any scientific and/or scholarly archive.
You are free to
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms below:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.