A semi-automatic approach to construct Vietnamese ontology from online text
DOI:
https://doi.org/10.19173/irrodl.v13i5.1250Keywords:
ontology, concept discovery, conceptual relation, text mining, lexical pattern, natural language processingAbstract
An ontology is an effective formal representation of knowledge used commonly in artificial intelligence, semantic web, software engineering, and information retrieval. In open and distance learning, ontologies are used as knowledge bases for e-learning supplements, educational recommenders, and question answering systems that support students with much needed resources. In such systems, ontology construction is one of the most important phases. Since there are abundant documents on the Internet, useful learning materials can be acquired openly with the use of an ontology. However, due to the lack of system support for ontology construction, it is difficult to construct self-instructional materials for Vietnamese people. In general, the cost of manual acquisition of ontologies from domain documents and expert knowledge is too high. Therefore, we present a support system for Vietnamese ontology construction using pattern-based mechanisms to discover Vietnamese concepts and conceptual relations from Vietnamese text documents. In this system, we use the combination of statistics-based, data mining, and Vietnamese natural language processing methods to develop concept and conceptual relation extraction algorithms to discover knowledge from Vietnamese text documents. From the experiments, we show that our approach provides a feasible solution to build Vietnamese ontologies used for supporting systems in education.Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International Licence. The copyright of all content published in IRRODL is retained by the authors.
This copyright agreement and use license ensures, among other things, that an article will be as widely distributed as possible and that the article can be included in any scientific and/or scholarly archive.
You are free to
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms below:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.