A MOOC on Approaches to Machine Translation

Authors

  • Marta Ruiz Costa-jussà Instituto Politécnico Nacional
  • Lluis Formiga Verbio
  • Oriol Torrillas Universitat Politècnica de Catalunya
  • Jordi Petit Universitat Politècnica de Catalunya
  • José Adrián Rodríguez Fonollosa Universitat Politècnica de Catalunya

DOI:

https://doi.org/10.19173/irrodl.v16i6.2145

Keywords:

Massive Open On-line Course, Machine Translation

Abstract

This paper describes the design, development and analysis of a MOOC entitled “Approaches to Machine Translation: rule-based, statistical and hybrid” providing lessons learnt on conclusions to be take into account in the future. The course was developed within a Canvas platform, used by recognized European universities. The course contains video-lectures, quizzes and laboratory assignments. Evaluation is done across on-line quizzes, programming assignments (PAs) evaluated by means of a specific code evaluation and peer-to-peer strategies. This MOOC allows to introduce people from various areas to the Machine Translation theory and practice. It also allows to internationally publisize different tools developed at the Universitat Polit`ecnica de Catalunya.

Author Biographies

Marta Ruiz Costa-jussà, Instituto Politécnico Nacional

Centro de Investigación en Computación

Oriol Torrillas, Universitat Politècnica de Catalunya

Departament de Teoria del Senyal i Comunicacions

Jordi Petit, Universitat Politècnica de Catalunya

Departament de Ciències de la Computació

José Adrián Rodríguez Fonollosa, Universitat Politècnica de Catalunya

Departament de Teoria del Senyal i Comunicacions

Published

2015-12-03

How to Cite

Ruiz Costa-jussà, M., Formiga, L., Torrillas, O., Petit, J., & Rodríguez Fonollosa, J. A. (2015). A MOOC on Approaches to Machine Translation. The International Review of Research in Open and Distributed Learning, 16(6). https://doi.org/10.19173/irrodl.v16i6.2145

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
86%
33%
Days to publication 
307
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
Athabasca University Press